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Let's get to know each other

• Moldova-Noua, Caraș-Severin

• Grigore Moisil High School Timisoara

• Faculty of Automation and Computers, UPT

– Computers and information technology

• PHD

– Identifying the user of a computer based on the way 
he types on the keyboard

• AC League, Youth House, Timisoara City Hall, Ministry 
of Development, Authority for Digitization of Romania

• Computer Programming, Programming Techniques, Software 
Project Management, Logic and discrete structures 3



Course administrative details

• Semester 1: 14 weeks
– 2 hours of class / week
– laboratory hours / week

• You will receive 2 grades , their average is the final grade at 
LSD
– 1 mark in the exam, in the session, after the 14 weeks
– 1 mark for the laboratory activity

• To pass the subject, you need to get at least grade 5 , both 
in the exam and in the laboratory

• The exam can be taken 3 times
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What we do on LSD
Demonstrations 
Sets 
Functions 
Properties of Functions 
Functions in Programming
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About LSD

• Logic and Discrete Structures

• What are we going to do?

– LOGIC,

– MATH and What Kind of Math?

– PROGRAMMING What kind of Programming?

• What do you need before starting this course?

– Fundamentals of mathematics

– Curiosity
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About LSD

MATHEMATICAL LOGIC

• how do we express sentences precisely
– for rigorous definitions , software specifications 

• how do we prove statements
– to show that an algorithm is correct 

• how do we process logical formulas
– to find solutions to problems 
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About LSD

DISCRETE MATHEMATICS

Image source: https://engineering.jhu.edu/ams/wp-content/uploads/2021/06/hero-image-research-500x282.jpeg
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About LSD

DISCRETE MATHEMATICS

It is the basic language of computer science
– algorithms

– bioinformatics

– computer graphics

– data science

– machine learning

– software engineering etc.

Image source: https://img.youtube.com/vi/Jv34MWng28o/maxresdefault.jpg
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About LSD

DISCRETE MATHEMATICS

• What are we studying?

we study notions/objects that take distinct, discrete 
values

- integers, logical values, relations, trees, graphs, etc.

• What are we not studying?

we do not study the continuous field

- real numbers, infinitesimals, limits, differential 
equations see: mathematical analysis
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About LSD

PROGRAMMING in PYTHON
PYTHON programming language

High level language
– It's super easy to get started with Python (even if you've 

never programmed before)

– The syntax is reader-friendly (and close to natural 
language)

– The code is compact

– The Python standard library provides a wide range of 
facilities and many external libraries are also available

– It is one of the most used programming languages today
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What we do at LSD 
Demonstrations
Sets 
Functions 
Properties of Functions 
Functions in Programming
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Let's begin

• DEMONSTRATION

• What is the demo?

– An argument that is so convincing that you can 
use it to convince others

– It's a sign of understanding
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DEMONSTRATION
A simple first example: Can we fill (without leaving 
empty spaces) an 8 x 8 chessboard with 1 x 2 
dominoes?
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Can we fill it or not?
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DEMONSTRATION BY EXAMPLE

The answer is obvious, YES. And I think each of you 
can prove it. It is enough to show an example and 

we proved:
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DEMONSTRATION BY EXAMPLE

The answer is obvious, YES. And I think each of you 
can prove it. It is enough to show an example and 

we proved:
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Can we fill it or not?

But if we complicate the matter a bit? What if we 
remove a square from the board? Can we fill the 
board again this time?
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Can we fill it or not?

I have tried 2 ways below but in both we are left 
with an unfilled square. This time we cannot 
demonstrate by example . But we can prove that 
there is no possible combination , can we?
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Can we fill it or not?

I have tried 2 ways below but in both we are left 
with an unfilled square. This time we cannot 
demonstrate by example . But we can prove that 
there is no possible combination , can we?
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Can we fill it or not?

We can prove it like this:

Out of 64 squares on the chessboard (8 x 8). If we 
eliminate one, we are left with only 63 ( 8 x 8 – 1 ).

We can fill with pieces of dominos only an even 
number of squares (1 x 2) . Because 63 is an odd 
number, it cannot be covered with the available 
pieces.

QED
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But what if we complicate things a little more? What 
if we remove two squares from the board? Can we 
fill the board this time? We only have 62 (8 x 8 -2) 
squares left to fill, so we could use 31 dominoes, 
right?
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Can we fill it or not?

I have tried 2 ways below, but in both we are left 
with 2 unfilled squares. Even this time we cannot 
demonstrate by example . Can we prove, again, that 
there is no possible combination?
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Can we fill it or not?

I have tried 2 ways below, but in both we are left 
with 2 unfilled squares. Even this time we cannot 
demonstrate by example . Can we prove, again, that 
there is no possible combination?
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To simplify our demonstration we will use the 2 colors of 
the chessboard. Each time there will be 2 different colors 
covered. We removed 2 white squares, so there are 32 
brown squares and only 30 white ones left on the board , a 
surface impossible to cover, because 2 uncovered colored 
squares will always remain covered.
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• Will this demonstration convince you?

• We can continues with the examples. If we 
remove 2 squares of different colors, can we 
cover the rest of the board with dominoes?

• Can we prove that we can cover the rest of the 
board regardless of the 2 different colored 
squares removed?
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What we've learned so far about the demos:

– To prove that something exists, it is enough to give 
an example

– To prove that something does not exist we have to 
follow a logical reasoning

We will continue with an example closer to 
mathematics:
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Is there a number?

• Is there a 2-digit number that if it becomes 7 
times smaller then its first digit disappears?

• Yes, 3 5 / 7 = 5

• It's not hard to find, the 2-digit numbers divisible 
by 7 are just a few: 14, 21, 28, 35 , 42, 49, 56, 63

• But we can complicate the problem: Is there a 
number that, if it becomes 57 times smaller, then 
the first digit disappears?

• 7 125 / 57 = 125
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• Is there a number that, if it becomes 57 times smaller, 
then the first digit disappears?

• 7 125 / 57 = 125
• How can we find it mathematically:

– We write down the searched number with ab...z, where 
each letter is a number

– ab...z = 57 * b...z
– X = b...z we consider to have k digits
– a * 10𝑘+ X = 57 * X
– a *10𝑘 = 57 * X – X = 56* X = 7 * 8 * X
– a *5𝑘 ∗ 2𝑘 = 7 * 8 * X
– a must be divisible by 7, a has 1 digit, so a = 7
– 7 *5𝑘 ∗ 2𝑘 = 7 * 8 * X
– 5𝑘 ∗ 2𝑘 = 8 * X
– 5𝑘 ∗ 2𝑘 = 23*X
– If k = 3 we have the solution X = 125
– So we found a number of the searched 7125 = 57*125
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Types of demonstrations

• By example - we have seen so far

• Proof by contradiction - we will go through

• By mathematical induction – we will go through
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Proof by contradiction

The contrapositive of a statement
• Example:

– The sentence "If it rains implies that I take my umbrella."
is equivalent to its contrapositive :
– "If I don't take my umbrella it means it's not raining."

• In logic, the above example is formally transposed as follows:
– We write the sentence "It's raining" with P
– We mark with Q the sentence "I take my umbrella"
– "If it's raining, it means I'm taking my umbrella." is transcribed 𝑃⇒𝑄 , where P 

is the premise and Q is the conclusion
– ¬ Pand ¬𝑄are the negations of the 2 sentences
– a sentance is equivalent to its contrapositive:

𝑃⇒𝑄 ⇔ ¬𝑄⇒¬P

31



Proof by contradiction

• The proof by contradiction uses the 
equivalence between a statement and its 
contrapositive:

𝑃⇒𝑄 ⇔ ¬𝑄⇒¬P

Statement the contrapositive

– suppose the false conclusion ( ¬𝑄)

– We show then the premise is false ( ¬P) , which is 
absurd, knowing that the premise is true (P)

– the conclusion cannot be false ⇒ the conclusion is 
true
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Proof by contradiction

• Example: The sum of three natural numbers is 
139. Prove that at least one of them is higher 
than 46 .

– P : "a+b+c = 139, where a, b, c are natural numbers"
– Q : "a > 46 or b > 46 or c > 46"
– build ¬𝑄: " a ≤ 46 and b ≤ 46 and c ≤ 46 ”
– ¬𝑄 ⇒" a+b+c ≤ 46+46+46  ≤ 138 ” contradicts P 

which says that the sum is 139 ⇒ ¬P
– Therefore P ⇒ Q is true
– QED
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Proof by mathematical induction

• If a sentence P (n) depends on a natural 
number n and 

1 ) base case: if P(1) is true

2) the inductive step: for any n≥ 1

P(n) ⇒ P(n + 1)

• then P(n) is true for any n.
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Proof by mathematical induction

• Example: Prove that
9𝑛 − 1 ⋮ 8, ∀𝑛 ∈ ℕ∗

1) we calculate P(1)= 91 − 1 = 8 ⋮ 8 - true
2) assume P(n) true

𝑃 𝑛 = 9𝑛 − 1 ⋮ 8
calculate𝑃 𝑛 + 1 = 9𝑛+1 − 1

= 9𝑛∗ 9 − 1
= 9𝑛∗ 9 − 9 − 8

= 9 ∗ (9𝑛 −1) + 8
= 9 ∗ 𝑃 𝑛 + 8

𝑃(𝑛) ⋮ 8 ș𝑖 8 ⋮ 8⇒𝑃 𝑛 + 1 = 9 ∗ 𝑃 𝑛 + 8 ⋮ 8 – true

9𝑛 − 1 ⋮ 8, ∀𝑛 ∈ ℕ∗
QED

35



What we do at LSD 
Demonstrations 
Sets
Functions 
Properties of Functions 
Functions in Programming

36



Introduction to Sets

B426 B528a 
B528b

B418a

37



What are the sets

Definition: 

A set is a collection of objects that are called elements (of 
the set).

We have two distincts notions: elements and sets
x ∈ S : element x is an element of S

y ∉ S : element y is not an element of S

The order of elements does not matter {1, 2, 3} = {2, 1, 3}

One element can not appear many times {1, 2, 3, 2}
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Subsets

A is a subset of B : A ⊆ B

if every element of A is also an element of B .

To prove A ⊈ B it is enough to find an element x 
∈ A for which x ∉ B.

• If A ⊆ B and B ⊆ A , then A = B (the sets are 
equal)

39



What we do at LSD 
Demonstrations 
Sets
Functions 
Properties of Functions 
Functions in Programming

40



FUNCTIONS

A function from a set A into a set B is a relation 
from A into B such that each element of A is 
related to exactly one element of the set B.

41Image: http://en.wikipedia.org/wiki/File:Total_function.svg



A function has 3 components

1. the domain of definition

2. value domain ( codomain )

3. the actual association

( law, rule of association, correspondence)

f : Z → Z, f ( x ) = x + 1 and

f : R → R, f ( x ) = x + 1

they are distinct functions !

42Image: http://en.wikipedia.org/wiki/File:Total_function.svg



Examples that are not functions

43

Image : http://en.wikipedia.org/wiki/File:Partial_function.svg _
http://en.wikipedia.org/wiki/File:Multivalued_function.svg

It don't associate a value for each elements from A

associates multiple values to an element
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Injective functions

A function f : A → B is injective if for any
x 1 , x 2 ∈ A , x 1 ≠ x2 ⇒ f ( x 1 ) ≠ f ( x 2 )

( associate different values to different arguments )

injective function                 non-injective function

45Image: http://en.wikipedia.org/wiki/File:Injection.svg 
http://en.wikipedia.org/wiki/File:Surjection.svg



Injective functions

Instead of the condition 

x 1 , x 2 ∈ A , x 1 ≠ x2 ⇒ f ( x 1 ) ≠ f ( x 2 ) 

we can write equivalently :

f ( x 1 ) = f ( x 2 ) ⇒ x 1 = x 2

( if the values are equal, then the arguments are equal)
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Injective functions

Property of injective functions:

If f : A → B and f is injective , then | A | ≤ |B| .

Not vice versa !

For any set A a. î . |A| > 1 we can construct f to take 
two elements of A in the same value of B
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Surjective functions

A function f : A → B is surjective if for each
y ∈ B exists an x ∈ A with f ( x ) = y .

surjective function nonsurjective 

48Image: http://en.wikipedia.org/wiki/File:Surjection.svg
Image: http://en.wikipedia.org/wiki/File:Injection.svg



Surjective functions

Property of surjective functions:

If f : A → B and f is surjective , then |A| ≥ |B| .

We can transform a non-surjective function into a 
surjective one by restricting value range:

• f 1 : R → R, f 1 ( x ) = x 2 is not surjective ,

• but f 2 : R → [0 , ∞ ), f 2 ( x ) = x 2 ( restricted to non-
negative values) is surjective .
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Bijective functions

A function that is injective and surjective is called a 
bijective .

A bijective function f : A → B matches one to one the 
elements of A with the elemetnts of B .

50Image: http://en.wikipedia.org/wiki/File:Bijection.svg



Bijective functions

For any function, from the definition , to each x ∈ A 
there corresponds a unique y ∈ B with f ( x ) = y.
For a bijective function , and vice versa: to each y ∈ B 
there corresponds a unique 
x ∈ A with f ( x ) = y.

If there exists f : A → B and
f is bijective, then |A| = |B |.

51Image: http://en.wikipedia.org/wiki/File:Bijection.svg



What we do at LSD 
Demonstrations 
Sets 
Functions 
Properties of functions 
Functions in programming

52



Function in programming

In programming languages, a function expresses 
a calculation : it receives a value (the argument) 
and produces as a result another value.

53Image: http://en.wikipedia.org/wiki/File:Function_machine2.svg



Functions in Python

Functions are defined simply, with a syntax (writing rule) 
similar to other programming languages. Thus, the function

f : Z → Z , f(x) = x + 3 is written in Python :

def f(x):
return x + 3

The def keyword introduces a definition , here, for the 
identifier f .
After the name of the function, enter its parameters 
between brackets ( x ) , followed by the sign : (colon).
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Functions in Python

def f(x):

return x + 3

In Python, indentation is very important in writing 
code.

Unlike other programming languages that use 
braces { }, in Python indentation is used for blocks 
of code.

Indentation is always preceded by the sign : 
(colon).
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Calling Functions in Python
Once the function is defined, it is called as follows:
>>> f( 1 )
4

When we call a function we can also specify the name of the 
parameter at the call :
>>> f(x=5)
8

We can also give the function a complex expression as a 
parameter:
>>> f(2*3)
9

56



Anonymous functions in Python

Notation lambda argument : expression defines in 
Python an anonymous function (lambda function ).
This is a function expression and can be used in other 
expressions. We can directly evaluate :

>>> ( lambda x : x + 3 )( 2 )
5

without having to give the function a name first.
This simple example illustrates that in Python, a 
function can be used just as easily as any other value.
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Anonymous functions in Python

Using the notation def , it is equivalent to we define :

>>> def f(x):

... return x + 3

to have

>>> def f(x):

...  return ( lambda x : x + 3 )(x)
58



Functions with multiple arguments in 
Python

Let the function in mathematics be :

amount : Z × Z → Z , sum (x , y) = x + y

One way to write this function in a Python 
program is :

>>> def sum (x, y):

... return x + y
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Functions are values in Python

A function is also a value (like integers , reals , etc.) 
and can be used just like any value (such as a 
parameter, returned , etc.) :

>>> def g ( f, x):

...  return f( x ) + x
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Case-defined functions in Python

abs : Z → Z, abs ( x ) = ൝
x, if x ≥ 0

−x, if (x < 0)

The value of the function is not given by a single expression,
but by one of two different expressions depending on a 
condition ( x ≥ 0).

In Python:

def abs(x):
if (x > 0):

return x
else:

return -x
61



Case-defined functions in Python

The general case of the if statement is:

if ( expr1 ):

express2

else:

express3

The if statement is evaluated like this:
– If the evaluation to expr1 gives the value “true” , the 

final value of the expression is the value of expr2, 
otherwise ( if expr1 is “false”) it is the value of expr3.
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Have a good day!
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